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A standard approach to solving the polynomial eigenvalue problem is to linearize, which is to
say the problem is transformed into an equivalent larger order generalized eigenproblem. For
the monomial basis, much work has been done to show the conditions under which linearizations
produce small backward errors, especially for the quadratic eigenvalue problem [3, 4]. Recently,
there has been increasing interest in linearizations of polynomials expressed in bases other than the
classical monomial basis [1]. In these bases, there is a need to establish the conditions under which
linearizations return eigenvalue and eigenvector estimates with small backward errors.

In this work, we investigate the accuracy and stability of polynomial eigenvalue problems solved by
linearization. The polynomial eigenvalue problems are expressed in the Lagrange basis, that is, by
their values at distinct interpolation nodes. We also utilize the barycentric Lagrange formulation
of the polynomial matrices, since the linearizations that arise from this formulation are particularly
simple, and are flexible for computations. An m by m matrix polynomial P()\) of degree n, expressed
in the barycentric Lagrange formulation is
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The numbers w; are known as the barycentric weights, and the coefficients F; = P(z;) € C™*™
are the samples of P(\) at the n+1 interpolation nodes z;. An (n+2)m by (n+ 2)m linearization
of the matrix polynomial P()) is given by [2]
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This linearization introduces 2m spurious infinite eigenvalues. However, these spurious eigenvalues
are not a problem in practice, and can be deflated from the pencil with little extra effort. The
advantage of introducing the spurious eigenvalues comes in the form of flexibility when balancing
the linearization. Furthermore, when the interpolation nodes are real or on the unit circle we may
perform a reduction to block Hessenberg form in only O(n?) operations. This process is related to
an inverse eigenvalue problem for computing the recurrence coefficients of orthogonal polynomials
with respect to a discrete inner product defined by the interpolation nodes [5].

For the linearization (1), we show the conditions under which the backward error of the polynomial
eigenvalue problem is not much larger than that of the backward error of the linearization. We also
investigate the stability of two smaller linearizations recently proposed for polynomials expressed
in barycentric form [6].
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