
Abstract

This research investigates three methods for estimating the parameters in differential equation
models. These three methods are applied to a model of metabolic dynamics in order to estimate
the insulin sensitivity from data obtained from an intravenous glucose tolerance test. The
Levenberg-Marquardt algorithm is shown to find reasonable estimates of the parameters of the
model. The parameters obtained by this method are in agreement with published parameters.
The estimates produced by the other two methods were not physiologically reasonable.

1

Contents

1 Diabetes 3
1.1 Parameter identification of diagnostic tests . 3

2 Model of the insulin-glucose system 4
2.1 Bergman’s minimal model . 4
2.2 Sensitivity equations . 5
2.3 IVGTT patient data . 6

3 Methodology 8
3.1 Differentiation of Data . 8
3.2 Integration of Equations . 9
3.3 Integration of data . 10

4 Results 11
4.1 Differentiation of data . 11
4.2 Integration of equations . 12
4.3 Integration of data . 14

5 Published parameter estimates 15

6 Discussion 17

Appendices 19

A Differentiation and Integration method parameter estimates 20

B Parameter estimates fitting Gb 21

C Robustness of parameter estimates 22

D Python Code 22

References 28

2

1 Diabetes

Diabetes is a great threat to the well being of individuals throughout the world. In recent years the number
of people diagnosed with diabetes is increasing and is expected to double between the years 2000 and
2030 [1]. Although the fundamental cause of the disease is not fully known, factors suggested to cause
an increased susceptibility to the disease include, an increase in the prevalence of obesity, poor diet and
lifestyle. The increase in diabetes can be a contributing factor in early death and other complications,
which will subsequently lead to excessive loading on health-care systems.

Being able to quantify an individuals susceptibility to diabetes and early diagnosis of the onset of the disease
would allow lifestyle changes to be made that will significantly reduce the risk of developing diabetes, or
allow early treatment offsetting the need for a patient to become fully insulin dependent.

There are two main forms of diabetes, these are:

• Type I Diabetes

Type I diabetes is characterised by a deficiency of insulin as a result of the destruction of insulin
producing β−cells in the pancreas. This is caused by an auto-immune disorder of the body, which
has a high tendency to be hereditary. The onset of type I diabetes is usually rapid, instigating the
need for the patient to become insulin dependant within only a few weeks of the early signs of the
disease. Type I diabetics make up approximately 5−10% of the diabetic population in North America
[2].

• Type II Diabetes

Type II diabetes is characterised by a reduction in insulin sensitivity and a reduction in insulin secretion.
Unlike type I diabetes the insulin resistance is caused not by a loss of insulin producing ability but a
reduction in insulin mediated clearance of glucose in the cells of the body known as insulin resistance
(IR). The risk of developing type II diabetes can be caused by a genetic disposition to the disease,
however a more likely cause is increased weight, obesity and lack of exercise.

1.1 Parameter identification of diagnostic tests

The diagnosis of diabetes is achieved by quantifying insulin sensitivity (IR−1). If this sensitivity is low this
suggests a decrease in the ability of insulin mediated clearance of glucose in the body.

Three of the main diagnosis tools available to clinicians are:

• Oral glucose tolerance test.

In this test a 75g glucose drink is given to the patient, with both plasma insulin and glucose concen-
trations measured four times over a two hour period.

• Euglycaemic insulin clamp.

In this test a constant infusion of insulin is given intravenously, with a second infusion of glucose
given and adjusted to keep the patient at a stable target blood glucose level. After the one hour of
stability, the insulin and glucose concentrations are measured over the second hour of the test.

• Intravenous glucose tolerance test.

In this test an intravenous dose of glucose is given, followed 20 minutes later by a dose of insulin.
Both glucose and insulin concentrations are measured at 2− 5 minute intervals over a period of two
hours.

3

These diagnostic tools allow clinicians to get a quantitative measure of the insulin sensitivity of a patient.
Once the clinician has this measure, he or she can then advise the patient of the treatments available to
them.

For these tests to be effective at determining insulin sensitivity of a patient, robust parameter identification
techniques are needed. They must be able to efficiently and repeatably determine the parameters of the
model in the face of uncertainty of measurement and modeling error.

The diagnosis of type I diabetes can generally be achieved through the oral glucose tolerance test, as
type I diabetic patients exhibit much higher glucose concentrations than type II and non-diabetic patients.
However for the case of type II diabetics, normal glucose concentrations are usual and it is necessary to
determine the dynamics of the insulin glucose interactions to be able to get a measure of the patients
insulin sensitivity.

2 Model of the insulin-glucose system

2.1 Bergman’s minimal model

There are a number of models that capture the dynamics of the insulin-glucose system, the first of which
was developed by R.N. Bergman in [3]. This was and still is considered the simplest valid model describing
the insulin-glucose system. It is a two compartment model incorporating the plasma glucose concentration
and a remote insulin compartment.

Glucose

Remote
Insulin

NHGBLiver Tissues

Plasma
Insulin

Kidneys

k4k6

k5

k2 k3

k1

Figure 1: Schematic of Bergman’s minimal model

NHGB is the net hepatic glucose balance. This describes the balance of clearance and production of glucose
in the liver in response to a variation of glucose concentration from basal levels [4]. Hepatic uptake of
glucose is the storage of glucose in the liver as glucagon, which is then available for release when plasma
glucose concentration is low. The dynamics of the liver are suggested to be solely driven by plasma glucose
concentration.

The remote insulin compartment I ′ represents the ability of insulin to increase the mobility of glucose
across the cell membrane.

The replacement of parameters p1 = k1 +k5, p2 = k3, p3 = k2(k4 +k6) and defining a new insulin action
compartment X = (k4 + k6)I

′, we obtain the following formulation of the insulin glucose system, as first
proposed in [3],

4

dG
dt

= −(p1 + X)G+ p1Gb, G(0) = G0 (1)

dX
dt

= −p2X+ p3 (I(t) − Ib) , X(0) = 0 (2)

G(t) and I(t) are the plasma glucose and plasma insulin concentration respectively. X(t) is the action of
remote insulin on glucose disappearance. The parameter p1 represents the effective glucose disappearance
at basal insulin levels and the ability to inhibit endogenous glucose production. The parameters p2 and p3

combined in the parameter insulin sensitivity SI = p3
p2

represent the ability of insulin to enhance glucose
disappearance and inhibit endogenous glucose production [5].

From this we can see that a low p3 value or a high p2 value resulting in a low SI value could be seen as
a large clearance of insulin through the kidneys or liver or a resistance of insulin to bind to cell receptors.
This low insulin sensitivity (or high insulin resistance) can be seen as a marker of diabetes.

The diagnostic tools for quantifying insulin sensitivity all measure only the glucose G(t) and insulin I(t)
concentrations. Thus any parameter estimation technique must deal with these compartments, which is
the justification for reformulating Bergman’s model so that only glucose and insulin terms are present.

We first replace dG
dt by some function F = F(t) in (1) then solve for X(t)

X(t) =
p1Gb − F

G(t)
− p1 (3)

substituting this into (2)

−
1

G

dF
dt

−
F

G2
(F+ p1Gb) = p2

(
p1Gb − F

G(t)
− p1

)
+ p3 (I(t) − Ib) (4)

and solving for dF
dt we obtain the system of coupled differential equations,

dG
dt

= F, G(0) = G0 (5)

dF
dt

=
F

G
(F− p1Gb) − p1p2 (G−Gb) − p3G (I(t) − Ib) , F(0) = p1 (Gb −G0) (6)

2.2 Sensitivity equations

To gain an understanding of how the parameters G0, p1, p2 and p3 effect the solution to (5) we form the
so called sensitivity equations of the model. These are differential equations describing how the solution
changes with respect to the parameters. These sensitivity equations are formed by taking the partial
derivatives of (5) and (6);

∂

∂pi

(
dG
dt

)
=
∂F

∂pi

∂

∂pi

(
dF
dt

)
=

∂

∂pi
M(G0, p1, p2, p3)

with

M =
F

G
(F− p1Gb) − p1p2 (G−Gb) − p3G (I(t) − Ib) .

Under the assumption that the parameters G0, p1, p2 and p3 do not vary with time, we are able to swap the
order of differentiation and using the chain rule to differentiate M(G0, p1, p2, p3). Due to the dependence
of G(t) and F(t) on the parameters G0, p1, p2 and p3, we obtain the system of differential equations

5

d
dt

(
∂G

∂G0

)
=
∂F

∂G0
,

∂G

∂G0

∣∣∣∣
t=0

= 1 (7)

d
dt

(
∂G

∂p1

)
=
∂F

∂p1
,

∂G

∂p1

∣∣∣∣
t=0

= 0 (8)

d
dt

(
∂G

∂p2

)
=
∂F

∂p2
,

∂G

∂p2

∣∣∣∣
t=0

= 0 (9)

d
dt

(
∂G

∂p3

)
=
∂F

∂p3
,

∂G

∂p3

∣∣∣∣
t=0

= 0 (10)

d
dt

(
∂F

∂G0

)
=
∂F

∂G

∂G

∂G0
+
∂F

∂F

∂F

∂G0
,

∂F

∂G0

∣∣∣∣
t=0

= −p1 (11)

d
dt

(
∂F

∂p1

)
=
∂M

∂G

∂G

∂p1
+
∂M

∂F

∂F

∂p1
− p2 (G−Gb) −Gb

F

G
,

∂F

∂p1

∣∣∣∣
t=0

= Gb −G0 (12)

d
dt

(
∂F

∂p2

)
=
∂M

∂G

∂G

∂p2
+
∂M

∂F

∂F

∂p2
− p1 (G−Gb) − F,

∂F

∂p2

∣∣∣∣
t=0

= 0 (13)

d
dt

(
∂F

∂p3

)
=
∂M

∂G

∂G

∂p3
+
∂M

∂F

∂F

∂p3
−G (I(t) − Ib) ,

∂F

∂p3

∣∣∣∣
t=0

= 0 (14)

with
∂M

∂G
=

(
−F (F− p1Gb)

G2
− p1p2 − p3 (I(t) − Ib)

)
(15)

∂M

∂F
=

(
2F− p1Gb

G
− p2

)
(16)

2.3 IVGTT patient data

Of the diagnosis tools available to clinicians, the cost of using the Euglycaemic clamp test is the highest
and is not widely used as a pure diagnosis test. However if the results of the oral glucose tolerance test are
inconclusive, the intravenous glucose tolerance test is used as a more accurate diagnostic tool.

IVGTT data was taken from [6] from performing an IVGTT on 10 type II diabetic subjects, the data was
extracted using Datatheif [7]. Both the insulin and glucose concentrations from these tests are shown in
Figure 2.

As the IVGTT is carried out after at least a 8 hour fast, what can then immediately be seen from these
plots is that all patients show elevated fasting glucose concentrations. The normoglycaemic range is
approximately 80− 120mg/dL and all patients show fasting levels above 110mg/dL with some well above
this (313mg/dL). This observation may be enough to warrant further investigation. However by itself would
not be enough to diagnose diabetes.

All of the patients in this study should exhibit reduced insulin sensitivity, since they have been diagnosed as
type II diabetics. A further observation can therefore be made about the insulin response of these patients.
All but one (patient 8) show virtually no pancreatic first-phase insulin response to the glucose stimulus
at time t = 0. This is an increase in pancreatic insulin production in response to elevated glucose levels.
Which is trait of both type I and II diabetes. In a non-diabetic subject, a response similar to patient 8 is
generally observed.

6

0 50 100 150 200 250
Time (min)

0

50

100

150

200

250

300

P
la

sm
a
 G

lu
co

se
 (

m
g
/d

L)

0 50 100 150 200 250
0

100

200

300

400

500

600

P
la

sm
a
 I
n
su

lin
 (
µ
U

/m
L)

Patient: 0

0 50 100 150 200 250
Time (min)

0

50

100

150

200

250

300

350

400

P
la

sm
a
 G

lu
co

se
 (

m
g
/d

L)

0 50 100 150 200 250
0

100

200

300

400

500

600

700

P
la

sm
a
 I
n
su

lin
 (
µ
U

/m
L)

Patient: 1

0 50 100 150 200 250
Time (min)

0

100

200

300

400

500

P
la

sm
a
 G

lu
co

se
 (

m
g
/d

L)

0 50 100 150 200 250
0

100

200

300

400

500

600

700

P
la

sm
a
 I
n
su

lin
 (
µ
U

/m
L)

Patient: 2

0 50 100 150 200 250
Time (min)

0

50

100

150

200

250

300

350

400

450

P
la

sm
a
 G

lu
co

se
 (

m
g
/d

L)

0 50 100 150 200 250
0

200

400

600

800

1000

P
la

sm
a
 I
n
su

lin
 (
µ
U

/m
L)

Patient: 3

0 50 100 150 200 250
Time (min)

0

100

200

300

400

500

600

P
la

sm
a
 G

lu
co

se
 (

m
g
/d

L)

0 50 100 150 200 250
0

100

200

300

400

500

600

700

800

P
la

sm
a
 I
n
su

lin
 (
µ
U

/m
L)

Patient: 4

0 50 100 150 200 250
Time (min)

0

100

200

300

400

500

600

P
la

sm
a
 G

lu
co

se
 (

m
g
/d

L)

0 50 100 150 200 250
0

200

400

600

800

P
la

sm
a
 I
n
su

lin
 (
µ
U

/m
L)

Patient: 5

0 50 100 150 200 250
Time (min)

0

100

200

300

400

500

600

700

800

P
la

sm
a
 G

lu
co

se
 (

m
g
/d

L)

0 50 100 150 200 250
0

200

400

600

800

1000

1200

P
la

sm
a
 I
n
su

lin
 (
µ
U

/m
L)

Patient: 6

0 50 100 150 200 250
Time (min)

0

50

100

150

200

250

300

350

400

450

P
la

sm
a
 G

lu
co

se
 (

m
g
/d

L)

0 50 100 150 200 250
0

100

200

300

400

500

600

700

P
la

sm
a
 I
n
su

lin
 (
µ
U

/m
L)

Patient: 7

7

0 50 100 150 200 250
Time (min)

0

100

200

300

400

500

P
la

sm
a
 G

lu
co

se
 (

m
g
/d

L)

0 50 100 150 200 250
0

100

200

300

400

500

600

700

800

P
la

sm
a
 I
n
su

lin
 (
µ
U

/m
L)

Patient: 8

0 50 100 150 200 250
Time (min)

0

50

100

150

200

250

300

350

P
la

sm
a
 G

lu
co

se
 (

m
g
/d

L)

0 50 100 150 200 250
0

200

400

600

800

1000

P
la

sm
a
 I
n
su

lin
 (
µ
U

/m
L)

Patient: 9

Figure 2: IVGTT data from [6]

3 Methodology

In this research we investigate three different methods of parameter identification for differential equation
models. These methods are applied to models of the form

dx

dt
= f(x, t,θθθ)

where x is the state of the system, t is time or some suitable independent variable and θθθ is a vector of
unknown parameters to be estimated. The methods investigated fall into the three different categories:

• Differentiation of Data

With this method, finite differences are used to estimate the derivatives of a dynamic model, using
adjacent data values. Then fitting the parameters of the model using linear least squares. The
accuracy of this method is usually limited, as approximating a local differential by including non local
data can lead to large errors in the computed derivatives. The speed of this method is much faster
than that of the alternatives and may be useful to find an initial estimate for other methods.

• Integration of Equations

This method requires that an initial estimate of the parameters be made, then a solution to the
dynamic model can be evaluated and compared to the data with a suitable metric. Then derivative
data is used to obtain a solution closer to the data. This method is by far the most costly to compute,
however will obtain at least a local minimum. This method also has the problem of convexity. A
global optimum will not always be found.

• Integration of Data

This method requires the dynamic model to be transformed into an integral equations. The integrals
occurring in these equations are evaluated numerically, this allows the parameter estimation problem
to be transformed into a purely algebraic problem.

3.1 Differentiation of Data

In order to avoid a nonlinear optimisation (in addition to the parameter estimation) we limit this method
to a small subset of models that are linear in the parameters. Thus the model will have the form

8

dx

dt
=

n∑
i=1

θθθigi (x, t) + h (x, t) (17)

where g (x, t) and h (x, t) are some known functions. These functions are not required to be linear, which
extends the class of models that can be handled by this method.

The essence of this method is to discretise the derivative dx
dt . If we take the Taylor series expansion of a

solution x(t) about a point t in both the forward and backward direction we obtain

x(ti + h) = x(ti) + h
dx(ti)

dt
+ h2 d2x(ti)

dt2
+O(h3)

x(ti − h) = x(ti) − h
dx(ti)

dt
+ h2 d2x(ti)

dt2
+O(h3)

subtracting the first equation from the second and solving for the first derivative yields the central difference
approximation to the derivative

dx(ti)

dt
=

x(ti+1) − x(ti−1)

2h
+O(h2).

Letting xi = x(ti) and replacing the derivative term (17) becomes

n∑
j=1

θθθjgj (xi, ti) =
xi+1 − xi−1

ti+1 − ti−1
− h (xi, ti) (18)

giving us a system of linear equations in θθθj which for m ≥ n data points we can solve using linear least
squares to obtain an estimate of θθθj.

3.2 Integration of Equations

In this method we aim to find a minimum least squares error between the model curve for a given parameter
set and the data. This requires the integration of the differential equations describing the system. Therefore
this method is the most general as it can be applied to any equation; the down side is that the computational
expense is far greater than that of other methods and it also does not guarantee that a local minimiser will
be found.

The model equation for this family of methods is the sum of squares of the residual vector r between
measured data yi and the modeled data f (ti,θθθ) where θθθ is the vector of parameters of the model; that is,

ri = yi − f (ti,θθθ) . (19)

The sum of squares of the residual gives the objective function F(θθθ)

F =
1

2
rTr. (20)

At a stationary point, the gradient of F(θθθ) will be zero. We therefore construct an iterative method to
obtain this minima. We first linearise the gradient of (20) about a current parameter estimate θθθ,

∇F(θθθ+ δθθθ) = ∇F(θθθ) +∇2F(θθθ)δθθθ+ higher order terms. (21)

9

If we ignore the higher order terms and set ∇F(θθθ+ δθθθ) = 0, we obtain a system of linear equations in δθθθ
that hopefully be a better approximation to the solution of ∇F(θθθ) = 0,

∇2F(θθθ)δθθθ = −∇F(θθθ). (22)

The gradient and Hessian matrix of (20) are

∇F(θθθ) = ∇rTr = −JTr (23)

∇2F(θθθ)jk =

m−1∑
i=0

(
∂ri

∂θj

∂ri

∂θk
+ ri

∂2ri

∂θj∂θk

)
(24)

where J is the Jacobian matrix of f(ti,θθθ) evaluated at θθθ. We then make a further assumption that the
second derivatives occurring in (24) are much smaller than that of the product of the first order derivatives,
in order to obtain the Gauss-Newton method from (22)

JTJδθθθ = JTr. (25)

Thus we are able to update our current parameter estimate by solving (25) for δθθθ and then calculate
θθθ(n+1) = θθθ(n) + δθθθ.

The Gauss-Newton method can be extended further by introducing a damping factor λ into (25), suitably
scaled to the diagonal entries of JTJ

(
JTJ + λ diag

(
JTJ

))
δθθθ = JTr. (26)

This method is known as the Levenberg-Marquardt method see [8, p227] for more detail, and the dampening
factor λ is chosen at each iteration to ensure that a lower objective function value is obtained.

3.3 Integration of data

In the same manner as the method of differentiation of data, we choose to restrict the choice of model to
that of the form of (17), then integrating both sides of this equation between 0 and t we obtain,

x(t) − x(0) =

n∑
i=1

θθθi

∫ t

0
gi (x, τ)dτ+

∫ t

0
h (x, t) dτ (27)

If we have m discrete measurements, we can evaluate (27) at each of these time values and form a system
of equations linear in θi and the integrals of functions of the unknown solution. From the data we are able
to evaluate the integrals numerically.

10

4 Results

For this research the Python [9] language was chosen to implement each of the methods presented in
the preceding section. This language was chosen as it is an interpreted language and also free software.
Together with the module Scipy [10] the combination provides a very good extensible basis on which to carry
out scientific computing. The Scipy module provides a wrapper of many of the MINPACK optimisation
routines written in FORTRAN. Python also has many other interfaces to other scientific computing libraries,
including the Gnu Scientific Library which also has many routines written in C for optimisation.

All three methods inherit the class Patient from the file read tools.py included in Appendix D. This
provides methods to read and plot the measured data for each patient. The object oriented functionality
is one of the advantages to programming in Python.

4.1 Differentiation of data

The model described by (5) and (6) poses significant problems for this method, since the parameters p1

and p2 do not occur linearly in in functions of G and F. We must either set one of these parameters to a
population estimate, or alternatively optimise one of the parameters separately. This however may result in
being more computationally expensive than integrating the equations directly. Another significant problem
with this method is the need to estimate the second derivatives Ḟ, since any error in measuring G will be
significant magnified in taking finite difference approximations.

Furthermore if we try to apply this method to the original formulation of the model as in (1) and (2) we
do not have data for the insulin action compartment X(t). Thus we are not able to form finite differences
at all. This is a significant limitation to this method.

This method also does not lend itself well to approximating the parameter G0. This can be estimated by

• Extrapolating the linear interpolant of the measured glucose samples in the range 5−10 min backward
to zero as suggested in [11, p73].

• Estimating the the glucose distribution volume VG from a patients body mass index, then calculating
G0 from the intravenous glucose dose through G0 = Gdose/VG.

The parameter p1 must be estimated through population averages since there is no other way that this
parameter can be estimated using this method. The p1 value was calculated from taking the average of
the estimates obtained by [6] as p1 = 1.305e− 2.

We obtain the system of linear equations from (6)

p2p1 (Gi −Gb) + p3Gi (Ii − Ib) =
Fi

Gi
(Fi − p1Gb) −

dFi

dt
i = 0 . . .m− 1 (28)

where Gi is the glucose concentration at time ti, Fi and dFi
dt are the first and second derivatives of G at time

ti which are estimated using central difference approximations from the measured glucose concentrations.

The Python implementation is included in Appendix D as int diff method.py which contains a class
Int Diff method with methods to approximate the first and second order derivatives of G and estimate
the parameters using both differentiation of data and integration of data.

The results of this method are presented in Table 6 in Appendix I, as all except one of the estimates for
the parameter SI were found to be negative. This is not acceptable as this will not conserve the mass of
the system.

The conclusion from this result should not suggest that this method is completely invalid, it does however
illustrate some of the pitfalls of using this method. Namely the accuracy of measurements must be good
to produce accurate derivative approximations. It should also be noted that the solution curve should be
smooth enough, so that the differencing step size is small enough to not induce large amounts of error.

11

4.2 Integration of equations

This method is by far the most flexible of the three methods. The implementation of the Levenberg-
Marquardt algorithm in the Scipy module requires only the vector of residuals to be computed. Finite
difference approximations are used to calculate the Jacobian matrix. However we can solve the sensitivity
equations given by (7) to (14) to obtain the Jacobian matrix with much greater accuracy than finite
differences.

The fitting of parameters was carried out using the methods found in model.py and optim tools.py in
Appendix D both of these files provide methods to solve the system of differential equations and optimise
the parameters G0, p1, p2 and p3. Figure 3 below shows the glucose concentrations obtained from the
optimised parameters and the patient data. All show a good correspondence between the data and the
optimised solution.

0 50 100 150 200 250
Time (min)

100

150

200

250

300

P
la

sm
a
 G

lu
co

se
 (

m
g
/d

L)

Patient: 0

Patient data
Optimized solution

0 50 100 150 200 250
Time (min)

50

100

150

200

250

300

350

400

P
la

sm
a
 G

lu
co

se
 (

m
g
/d

L)

Patient: 1

Patient data
Optimized solution

0 50 100 150 200 250
Time (min)

250

300

350

400

450

500

P
la

sm
a
 G

lu
co

se
 (

m
g
/d

L)

Patient: 2

Patient data
Optimized solution

0 50 100 150 200 250
Time (min)

100

150

200

250

300

350

400

450

P
la

sm
a
 G

lu
co

se
 (

m
g
/d

L)

Patient: 3

Patient data
Optimized solution

0 50 100 150 200 250
Time (min)

150

200

250

300

350

400

450

500

550

600

P
la

sm
a
 G

lu
co

se
 (

m
g
/d

L)

Patient: 4

Patient data
Optimized solution

0 50 100 150 200 250
Time (min)

300

350

400

450

500

550

600

650

P
la

sm
a
 G

lu
co

se
 (

m
g
/d

L)

Patient: 5

Patient data
Optimized solution

12

0 50 100 150 200 250
Time (min)

0

100

200

300

400

500

600

700

800

P
la

sm
a
 G

lu
co

se
 (

m
g
/d

L)

Patient: 6

Patient data
Optimized solution

0 50 100 150 200 250
Time (min)

100

150

200

250

300

350

400

450

P
la

sm
a
 G

lu
co

se
 (

m
g
/d

L)

Patient: 7

Patient data
Optimized solution

0 50 100 150 200 250
Time (min)

100

150

200

250

300

350

400

450

500

P
la

sm
a
 G

lu
co

se
 (

m
g
/d

L)

Patient: 8

Patient data
Optimized solution

0 50 100 150 200 250
Time (min)

50

100

150

200

250

300

350

P
la

sm
a
 G

lu
co

se
 (

m
g
/d

L)

Patient: 9

Patient data
Optimized solution

Figure 3: Optimised solutions and patient data

Table 1 shows the optimised parameter estimates obtained and the norm of the residual at the optimum.
All estimates, except for patient 2, have positive values for the parameters p1, p2 and p3. As this particular
implementation of the Levenberg-Marquardt algorithm performs unconstrained minimisation, these results
are very promising for this method.

Table 1: Optimised parameter estimates

Patient G0 p1 p2 p3 Si Residual

0 293.3326 0.01463 0.04316 2.877e− 6 6.666e− 5 16.8

1 360.1065 0.02387 0.03953 8.374e− 6 2.119e− 4 43.2

2 454.5988 0.01267 0.01533 −2.274e− 7 −1.483e− 5 35.1

3 330.3164 0.01155 0.004632 4.282e− 7 9.246e− 5 39.4

4 411.1837 0.009455 0.08611 1.798e− 5 2.088e− 4 29.9

5 575.0986 0.01317 0.002355 2.222e− 8 9.436e− 6 38.4

6 322.5899 0.01508 0.007609 1.203e− 7 1.581e− 5 48.2

7 326.9480 0.01072 0.256 2.556e− 5 9.985e− 5 24.7

8 351.6261 0.01611 0.026 2.991e− 7 1.15e− 5 20.7

9 264.8381 0.008629 0.02673 1.572e− 6 5.881e− 5 19.7

The estimation of Gb used in the preceding optimisation was found by taking the glucose measurement at
t = 240min. This assumes that the glucose concentration will return to basal levels by this time. However

13

we further investigate the role that this parameter plays by optimising Gb also. The sensitivity equations
for Gb are

d
dt

(
∂G

∂Gb

)
=

∂F

∂Gb
(29)

d
dt

(
∂F

∂Gb

)
=
∂M

∂G

∂G

∂Gb
+
∂M

∂F

∂F

∂Gb
− p1

F

G
+ p1p2 (30)

where ∂M
∂G and ∂M

∂F are defined in (15) and (16).

Table 2 below show the parameter estimates obtained from fitting the model parameters G0, p1, p2, p3 and
Gb. This extra parameter has drastically changed the estimates of p2 and p3 unfortunately being negative
for some of the patients. This suggests that there is a trade off in fitting the parameters from such a small
number of observations m = 20. For patients 0, 1, 4, 7 and 9, where the estimates are physiologically
reasonable, there is a reduction in the parameter p1 with a corresponding increase in in Gb. From (1) the
cross term p1Gb implies that there is likely to be some tradeoff in fitting these parameters together.

Table 2: Optimised parameter estimates fitting Gb

Patient G0 p1 p2 p3 Gest
b G

opt
b Si Residual

0 292.9451 0.01306 0.0454 3.586e− 6 111.8 110.7 7.898e− 5 15.8

1 353.8095 0.01682 0.0547 1.083e− 5 133.6 138.2 1.981e− 4 32.4

2 455.2201 0.01042 0.0009064 −6.378e− 7 255.5 174.3 −7.037e− 4 29.9

3 329.0296 0.01072 −0.01629 −3.345e− 8 120.4 55.37 2.054e− 6 27.4

4 407.9166 0.009819 0.06887 1.677e− 5 170.2 189 2.435e− 4 24.3

5 608.8128 0.07574 −0.001648 1.297e− 6 313.4 467.3 −7.868e− 4 32.8

6 362.2127 0.03 0.2658 −1.304e− 5 96.01 104 −4.906e− 5 29.6

7 328.1521 0.01185 0.2395 2.316e− 5 105.2 106.1 9.672e− 5 24.3

8 349.7680 0.02105 −0.003085 7.162e− 7 105.7 181.4 −2.321e− 4 19.9

9 271.5651 0.01085 0.0261 1.29e− 6 75.69 75.25 4.941e− 5 17.3

Figure 7 in appendix B shows the optimised solutions given by the parameters in Table 2. They show good
correspondence to the data. However for patients 0, 1, 4, 7 and 9 the extra parameter does not significantly
effect the dynamics of the optimised solution.

The motivation behind optimising Gb was to ensure that the basal glucose concentration is correctly
estimated. Another approach would be to take a further measurement much after t = 240min. This would
ensure that a patient had returned to a basal level. However this would increase the time that a clinician
must supervise the patient which may not be acceptable.

4.3 Integration of data

As with the method of differentiation of data, the integration of data also has many similar problems in
estimating the parameters of this model. We must also estimate the parameter p1 some other way, due to
the nonlinear term p1p2 in (6).

14

This method does not need to estimate the second derivatives from the data. Only the first derivatives
need to be estimated. Also the first derivatives occur inside an integral term. Thus one could hope that
some of the error will be taken up in integrating the estimated derivatives.

The system of linear equations are formed by integrating (6) between 0 and ti for i = 0..m − 1 and
substituting the initial condition F(0) = p1 (Gb −G0) from (6)

G0+p2

∫ ti

0
p1 (G(t) −Gb) dt+p3

∫ ti

0
G(t) (I(t) − Ib) dt =

∫ ti

0

F(t)

G(t)
(F(t) − p1Gb) dt−F(ti)+p1Gb (31)

This allows the parameter G0 to be estimated directly. Thus one could hope that better estimates are
obtained than through indirect estimation.

The least squares solution to this system is then found giving the parameters G0, p2 and p3, for all except
patient 0 the estimates for SI are negative. This does not represent physiologically reasonable conditions.

The approximation of derivative data needed for this method is likely to be one of the main causes of the
the failure. One way to try to get around this problem might be to use the original model described by
(1) and (2) also fitting the insulin action compartment X(t) as a piecewise constant parameter between
measurements, however this was not carried out in this research.

This method does have a little more flexibility than differentiating the data, since the integrals are defined
over a range of points. In contrast, differentiating data requires the inclusion of non local data into the
derivative estimate.

Again the integration of data method should not be completely disregarded on the evidence presented here.
We have just illustrated some of the problems associated with using this method. For other models of the
metabolic system this method produces credible parameter estimates (see [11, p72]).

5 Published parameter estimates

In this section we present a comparison between the parameters published in [6] and the parameters we have
estimated using the Levenberg-Marquardt algorithm presented earlier. Figure 4 shows the differences be-
tween the solutions. This shows half of the solutions correlate very well. However the published parameters
for patient 1 does not fit the data well at all.

The software used in [6] was MINMOD [12]. This software uses a gradient based algorithm to estimate
the parameters. It also uses the sensitivity equations to evaluate the Jacobian matrix. The algorithm used
for the estimation also has the ability to perform constrained optimisation.

0 50 100 150 200 250
100

150

200

250

300
Patient: 0

Optimized solution
Published solution
Patient data

0 50 100 150 200 250
50

100

150

200

250

300

350

400
Patient: 1

Optimized solution
Published solution
Patient data

15

0 50 100 150 200 250
250

300

350

400

450

500
Patient: 2

Optimized solution
Published solution
Patient data

0 50 100 150 200 250
100

150

200

250

300

350

400

450
Patient: 3

Optimized solution
Published solution
Patient data

0 50 100 150 200 250
150

200

250

300

350

400

450

500

550

600
Patient: 4

Optimized solution
Published solution
Patient data

0 50 100 150 200 250
300

350

400

450

500

550

600

650
Patient: 5

Optimized solution
Published solution
Patient data

0 50 100 150 200 250
0

100

200

300

400

500

600

700

800
Patient: 6

Optimized solution
Published solution
Patient data

0 50 100 150 200 250
100

150

200

250

300

350

400

450
Patient: 7

Optimized solution
Published solution
Patient data

0 50 100 150 200 250
100

150

200

250

300

350

400

450

500
Patient: 8

Optimized solution
Published solution
Patient data

0 50 100 150 200 250
50

100

150

200

250

300

350
Patient: 9

Optimized solution
Published solution
Patient data

Figure 4: Optimised solutions, patient data and published solutions

16

Table 3 shows the parameter estimates from [6]. As well as the norm of the residual for the solution
obtained from these parameters.

Table 3: Published parameters

Patient G0 p1 p2 p3 Si Residual

0 297.9 0.0154 0.015 1.38e− 6 9.2e− 5 25.19

1 381.6 0.021 0.072 8.28e− 6 1.15e− 4 61.44

2 444.13 0.0133 0.00495 1.089e− 7 2.2e− 5 43.31

3 315.6 0.0097 0.007 6.02e− 7 8.6e− 5 69.46

4 409.0 0.0087 0.098 2.058e− 5 2.1e− 4 31.66

5 563.0 0.0133 0.0074 1.036e− 7 1.4e− 5 50.95

6 315.0 0.015 0.0016 1.568e− 7 9.8e− 5 46.64

7 323.8 0.009 0.3 2.97e− 5 9.9e− 5 34.83

8 353.9 0.017 0.0011 5.72e− 8 5.2e− 5 22.57

9 263.0 0.0084 0.027 1.566e− 6 5.8e− 5 20.06

6 Discussion

In this research we have described three methods for estimating parameters of differential equation models.
Applying each of these methods to estimate the parameters of Bergman’s minimal model from IVGTT
data.

Both the integration and differentiation of data methods produced estimates that were not physiologically
reasonable. We suspect this is mainly due to the error introduced from approximating the derivatives using
finite differences. For this particular estimation problem, both methods are forced to make assumptions
about some of the parameters. Which has been shown to significantly limit the method. However for other
models of the metabolic system these limitations do not arise see [11, p72].

The Levenberg-Marquardt algorithm performed well in estimating the parameters the model. However
there was an obvious limitation in using unconstrained optimisation. This caused some of the parameters to
become negative which is not physiologically possible. The Levenberg-Marquardt algorithm implementation
from MINPACK does allow for constrained optimisation. However the wrapper in Scipy for this algorithm
used does not provide this functionality. There is however an interface to the Gnu Scientific Library which
does provide this functionality. This implementation warrants further investigation.

The optimisation of the parameter Gb in addition to the other parameters did not give physiologically
reasonable parameter estimates. However where the estimates were reasonable, the basal glucose concen-
tration was above the concentration estimated using the last measurement from the IVGTT. This shows
that this parameter may be worth optimising, provided that the algorithm can be constrained to give
positive parameter estimates.

The robustness of the parameter estimates produced by the Levenberg-Marquardt algorithm was investi-
gated. Table 8 in appendix C shows the parameter estimates obtained for patient 1. This uses random
initial estimates of the parameters within 70% of the published estimates. All estimates are equal up to
3 significant figures. This shows that for this patient the local minimum is well defined. However this
may not be the case for other patients. In cases where the local minima is not so well defined, it may
be necessary to peform a grid search to obtain the best local minima within a reasonable range of the
parameters.

17

The comparison to the published data shows good correspondence between the solution curves of the model.
There are cases where the published results showed significantly different solutions. This is illustrated better
in figure 5 and 6. The solution for patient 1 shows significant discrepencies between the data and published
soultion. This is due to the weights put on the residuals. The weights used in [6] are the reciprocal of the
variance of the measurement error. This is suggested to be an optimal weighting scheme for optimizing the
parameters. However this weighting has significantly reduced the goodness of fit. Table 4 shows significant
differences in the parameters estimates for patient 1.

For patient 4 the situation is far better. Both parameter estimates produce solutions that fit the data
very well. However Table 5 shows that there are significant differences in the parameters p2 and p3 yet
both produce solutions that are within 2% of each other. The SI parameter provides the answer to this
discrepency as the difference between the estimated SI values is much smaller. This shows that it is the
combination of p2 and p3 rather than the parameters themselves that is most important to estimating
optimal parameters. Reformulating the model to include SI rather than just p2 and p3 warrants fruther
investigation.

The model was not reformulated to include SI since the some of the parameter terms become nonlinear
in both p2 and SI. To use differentiation and integration of data methods on the reformulated model this
would require assumptions about the parameter p2. Since the parameter p2 contains information about
the insulin sensitivity any assumption about this parameter would bias the estimation of SI. However the
Levenberg-Marquardt algorithm can be applied to the reformulated model without such issues.

0 50 100 150 200 250
50

100

150

200

250

300

350

400
Patient: 1

Optimized solution
Published solution
Patient data

Figure 5: Comparison of solutions for patient 1

18

0 50 100 150 200 250
150

200

250

300

350

400

450

500

550

600
Patient: 4

Optimized solution
Published solution
Patient data

Figure 6: Comparison of solutions for patient 4

Table 4: Comparison of parameter estimates for patient 1

G0 p1 p2 p3 Si Residual

Optimised parameters 360.1065 0.0239 0.0395 8.374e− 06 0.0002119 43.24

Published parameters 381.6000 0.0210 0.0720 8.28e− 06 0.000115 61.44

Percentage difference −5.9686 12.0142 −82.1550 1.1209 45.7171 −42.08

Table 5: Comparison of parameter estimates for patient 4

G0 p1 p2 p3 Si Residual

Optimised parameters 411.1837 0.0095 0.0861 1.798e− 5 2.0878e− 4 29.92

Published parameters 409.0000 0.0087 0.0980 2.058e− 5 2.1e− 4 31.65

Percentage difference 0.5311 7.9866 −13.8143 −14.4818 −0.5866 −5.81

19

Appendices

A Differentiation and Integration method parameter estimates

Patient G0 p2 p3 SI

0 302.3 −0.009292 −6.269e− 06 0.0006747

1 363.8 1.86 −3.333e− 05 −1.792e− 05

2 481 −2.664 9.184e− 05 −3.447e− 05

3 372.4 3.533 −1.28e− 05 −3.623e− 06

4 438.8 8.141 −0.0002387 −2.932e− 05

5 609.1 2.908 −3.627e− 05 −1.247e− 05

6 402.8 28.56 −0.00105 −3.678e− 05

7 347 3.375 −0.0001024 −3.033e− 05

8 371.4 25.55 −0.0008403 −3.289e− 05

9 286.5 2.462 −3.615e− 05 −1.468e− 05

Table 6: Estimated parameters using differentiation of data

Patient G0 p2 p3 SI

0 327.6 0.003213 1.604e− 06 0.0004991

1 735.6 −0.004928 1.116e− 06 −0.0002265

2 690.3 0.02379 −4.488e− 07 −1.886e− 05

3 1657.6 −0.09166 3.482e− 06 −3.799e− 05

4 3769.2 −0.3228 1.943e− 05 −6.018e− 05

5 2003.3 −0.1995 3.528e− 06 −1.769e− 05

6 15748.1 0.1703 −1.725e− 05 −0.0001013

7 1469.8 −0.1498 8.939e− 06 −5.967e− 05

8 2624.0 0.1245 −1.028e− 05 −8.256e− 05

9 963.7 −0.08294 2.919e− 06 −3.52e− 05

Table 7: Estimated parameters using integration of data

20

B Parameter estimates fitting Gb

0 50 100 150 200 250
Time (min)

100

150

200

250

300

P
la

sm
a
 G

lu
co

se
 (

m
g
/d

L)

Patient: 0

Patient data
Optimized solution

0 50 100 150 200 250
Time (min)

50

100

150

200

250

300

350

400

P
la

sm
a
 G

lu
co

se
 (

m
g
/d

L)

Patient: 1

Patient data
Optimized solution

0 50 100 150 200 250
Time (min)

250

300

350

400

450

500

P
la

sm
a
 G

lu
co

se
 (

m
g
/d

L)

Patient: 2

Patient data
Optimized solution

0 50 100 150 200 250
Time (min)

100

150

200

250

300

350

400

450

P
la

sm
a
 G

lu
co

se
 (

m
g
/d

L)

Patient: 3

Patient data
Optimized solution

0 50 100 150 200 250
Time (min)

150

200

250

300

350

400

450

500

550

600

P
la

sm
a
 G

lu
co

se
 (

m
g
/d

L)

Patient: 4

Patient data
Optimized solution

0 50 100 150 200 250
Time (min)

300

350

400

450

500

550

600

650

P
la

sm
a
 G

lu
co

se
 (

m
g
/d

L)

Patient: 5

Patient data
Optimized solution

0 50 100 150 200 250
Time (min)

0

100

200

300

400

500

600

700

800

P
la

sm
a
 G

lu
co

se
 (

m
g
/d

L)

Patient: 6

Patient data
Optimized solution

0 50 100 150 200 250
Time (min)

100

150

200

250

300

350

400

450

P
la

sm
a
 G

lu
co

se
 (

m
g
/d

L)

Patient: 7

Patient data
Optimized solution

21

0 50 100 150 200 250
Time (min)

100

150

200

250

300

350

400

450

500

P
la

sm
a
 G

lu
co

se
 (

m
g
/d

L)

Patient: 8

Patient data
Optimized solution

0 50 100 150 200 250
Time (min)

50

100

150

200

250

300

350

P
la

sm
a
 G

lu
co

se
 (

m
g
/d

L)

Patient: 9

Patient data
Optimized solution

Figure 7: Optimised solutions and patient data fitting parameter Gb

C Robustness of parameter estimates

G0 p1 p2 p3 residual

355.1 0.01683 0.05959 1.104e− 5 32.85

355.1 0.01683 0.05958 1.104e− 5 32.85

355.1 0.01683 0.05959 1.104e− 5 32.85

355.1 0.01683 0.05958 1.103e− 5 32.85

355.1 0.01683 0.05952 1.103e− 5 32.85

355.1 0.01683 0.05958 1.104e− 5 32.85

355.1 0.01683 0.05958 1.104e− 5 32.85

355.1 0.01683 0.05958 1.104e− 5 32.85

355.1 0.01683 0.05959 1.104e− 5 32.85

355.1 0.01683 0.05958 1.104e− 5 32.85

355.1 0.01685 0.05952 1.103e− 5 32.85

355.1 0.01683 0.05958 1.104e− 5 32.85

355.1 0.01683 0.05959 1.104e− 5 32.85

355.1 0.01685 0.05952 1.103e− 5 32.85

355.1 0.01683 0.05959 1.104e− 5 32.85

355.1 0.01683 0.05958 1.104e− 5 32.85

355.1 0.01684 0.05953 1.103e− 5 32.85

355.1 0.01683 0.05959 1.104e− 5 32.85

355.1 0.01684 0.05956 1.103e− 5 32.85

355.1 0.01683 0.05959 1.104e− 5 32.85

Figure 8: Parameter estimates with randomly selected initial conditions

D Python Code

22

#!/ u s r / b i n / env python

from pylab import plot ,show ,figure ,twinx ,xlabel ,ylabel ,ylim ,savefig ,legend ,title

from glob import glob

from scipy.io.netcdf import netcdf_file

from scipy import array

class Patient:

def __init__(self ,filename):

self.nc_file=filename

self.data ={}

self.read_nc ()

def read_nc(self):

fp=netcdf_file(self.nc_file ,’r’)

for key in fp.variables.iterkeys ():

self.data[key]= array(fp.variables[key][:])

fp.close ()

def plot_paper_data(self ,out=None):

imax=max(self.data[’glucose ’])+max(self.data[’insulin ’])

ax1=figure ()

plot(self.data[’t_glucose ’],self.data[’glucose ’],’go-’)

ylim (0)

xlabel(’Time (min)’)

ylabel(’Plasma Glucose (mg/dL)’)

ax2=twinx()

plot(self.data[’t_insulin ’],self.data[’insulin ’],’ko--’)

ylabel(’Plasma Insulin (μU/mL)’)

ylim([0,imax])

ax2.yaxis.tick_right ()

title(’Patient: ’+str(self.nc_file [-4]))

if(out==None):

pass

#show ()
else:

savefig(out)

#!/ u s r / b i n / env python

from glob import glob

from scipy.optimize import leastsq

from read_tools import Patient

from scipy import array ,zeros ,linspace

from scipy import interp ,zeros ,sqrt ,diag

from scipy.integrate import odeint

from scipy import rand ,ones ,concatenate

from pylab import plot ,show ,draw ,figure ,close ,savefig ,xlabel ,ylabel ,clf ,legend ,title

class B_optim(Patient):

"""B_optim provides optimization tools for Bergman ’s\n

minimal model , it provides methods to cook data and\n

run the optimization"""

def __init__(self ,filename):

#Read i n data and pa ramete r s from f i l e
Patient.__init__(self ,filename)

#Set paramete r a r r a y
self.theta_t=concatenate ([self.data[’G0’],\

self.data[’p1’],\

self.data[’p2’],\

self.data[’p3’]])

#I n i t i a l i z e pa ramete r s
self.p={’Gb’:self.data[’glucose ’][-1],\

’Ib’:self.data[’insulin ’][-1],\

’G0’:self.data[’G0’],\

’p1’:self.data[’p1’],\

’p2’:self.data[’p2’],\

23

’p3’:self.data[’p3’]}

#Set we i gh t s
self.weights =1.0e-0* ones (20)

self.weights [0:4]=0.0

s e l f . we i gh t s [−6:]=1.0

#I n i t i a l i z e t ime v e c t o r to p l o t
self.t=linspace(0,self.data[’t_glucose ’][-1] ,100)

def cook_data(self):

self.yc=self.optimize_fdf(self.theta_t)

self.cooked_error =(self.yc[:,0]-self.data[’glucose ’])* self.weights

def plot_cooked(self):

plot(self.t,self.yc[:,0],label=’Published soultion ’)

def interp(self ,t):

return interp(t,self.data[’t_insulin ’],self.data[’insulin ’])

def plot_fitted(self):

plot(self.data[’t_glucose ’],self.y[:,0],’g-’)

def plot_data(self):

plot(self.data[’t_glucose ’],self.data[’glucose ’],’ro’,label=’Patient data’)

def calc_si(self):

self.p[’Si’]=self.theta [3]/ self.theta [2]

def calc_var(self):

self.var=sqrt(diag(self.cov_x))

def write_data(self):

self.calc_si ()

fp=open(self.outparam ,’w’)

for name in self.p.keys ():

fp.write(name+":"+str(self.p[name])+"\n")

fp.close ()

self.y.tofile(self.outsol)

def simulate_model(self ,theta):

self.p[’p1’]=theta [1]

self.p[’p2’]=theta [2]

self.p[’p3’]=theta [3]

y0=array ([self.theta[0],self.p[’p1’]*(self.p[’Gb’]-theta [0])\

,1,0,0,0,-self.p[’p1’],self.p[’Gb’]-theta [0],0,0])

if(len(theta)>4):

self.p[’Gb’]=theta [4]

y0=array ([self.theta[0],self.p[’p1’]*(self.p[’Gb’]-theta [0])\

,1,0,0,0,-self.p[’p1’],self.p[’Gb’]-theta [0],0,0,0,self.p[’p1’]])

if(len(theta)>5):

self.p[’Ib’]=theta [5]

y0=array ([self.theta[0],self.p[’p1’]*(self.p[’Gb’]-theta [0])\

,1,0,0,0,-self.p[’p1’],self.p[’Gb’]-theta [0],0,0,0,self.p[’p1’],0,0])

return odeint(self.minimal_model ,y0,self.t)

def plot_simulated(self):

plot(self.t,self.ys[:,0],label=’Optimized solution ’)

def plot_legends(self):

xlabel(’Time (min)’)

ylabel(’Plasma Glucose (mg/dL)’)

title(’Patient: ’+str(self.nc_file [-4]))

legend ()

#!/ u s r / b i n / env python

from glob import glob

from scipy.optimize import leastsq

24

from read_tools import Patient

from scipy import array ,zeros ,linspace ,rand ,ones ,concatenate ,interp

from scipy.integrate import odeint

from pylab import plot ,show ,savefig ,xlabel ,ylabel ,clf ,legend ,title

from optim_tools import B_optim

class Model(B_optim):

def __init__(self ,filename):

B_optim.__init__(self ,filename)

self.theta=concatenate ([self.data[’G0’],\

self.data[’p1’],\

self.data[’p2’],\

self.data[’p3’]])

self.outparam=’../ dat/model/dat_param ’+self.nc_file [-4]+’.dat’

self.outsol=’../dat/model/dat_sol ’+self.nc_file [-4]+’.dat’

def minimal_model(self ,x,t):

f=zeros (10)

gg=(-x[1]/x[0]**2*(x[1]-self.p[’p1’]*self.p[’Gb’])\

-self.p[’p1’]*self.p[’p2’]\

-self.p[’p3’]*(self.interp(t)-self.p[’Ib’]))

ff=(2*x[1]-self.p[’p1’]*self.p[’Gb’])/x[0]-self.p[’p2’]

f[0]=x[1]

f[1]=(x[1]**2 - self.p[’p1’]*self.p[’Gb’]*x[1])/x[0]\

-self.p[’p2’]*x[1]\

-self.p[’p1’]*self.p[’p2’]*(x[0]-self.p[’Gb’])\

-self.p[’p3’]*(self.interp(t)-self.p[’Ib’])*x[0]

f[2]=x[6]

f[3]=x[7]

f[4]=x[8]

f[5]=x[9]

f[6]=gg*x[2]+ff*x[6]

f[7]=gg*x[3]+ff*x[7]-self.p[’p2’]*(x[0]-self.p[’Gb’])\

-x[1]/x[0]* self.p[’Gb’]

f[8]=gg*x[4]+ff*x[8]-self.p[’p1’]*(x[0]-self.p[’Gb’])-x[1]

f[9]=gg*x[5]+ff*x[9]-x[0]*(self.interp(t)-self.p[’Ib’])

return f

def optimize_fdf(self ,theta):

self.p[’p1’]=theta [1]

self.p[’p2’]=theta [2]

self.p[’p3’]=theta [3]

y0=array ([self.theta[0],self.p[’p1’]*(self.p[’Gb’]-theta [0])\

,1,0,0,0,-self.p[’p1’],self.p[’Gb’]-theta [0],0,0])

self.y=odeint(self.minimal_model ,y0 ,self.data[’t_glucose ’])

return self.y

def optimize_f(self ,theta):

y=self.optimize_fdf(theta)

return (y[:,0]-self.data[’glucose ’])* self.weights

def optimize_df(self ,theta):

y=self.optimize_fdf(theta)

return y[: ,2:6]

def run_optimize(self):

print "Optimizing patient: "+self.nc_file [-4]

self.theta ,self.cov_x ,self.infodict , self.mesg ,self.iter=leastsq (\

self.optimize_f ,self.theta ,Dfun=self.optimize_df ,full_output =1)

if(__name__ ==’__main__ ’):

path=glob(’../ IVGTT_data/netcdfdata/patient *.nc’)

path.sort()

cohort =[]

for line in path:

cohort.append(Model(line))

for patient in cohort:

patient.run_optimize ()

clf()

patient.plot_data ()

25

patient.ys=patient.simulate_model(patient.theta)

patient.plot_simulated ()

patient.plot_legends ()

title(’Patient: ’+str(patient.nc_file [-4]))

savefig(’../ figures/model/patient ’+patient.nc_file [-4]+’.pdf’)

patient.calc_var ()

patient.write_data ()

#!/ u s r / b i n / env python

from glob import glob

from scipy.optimize import leastsq

from read_tools import Patient

from scipy import array ,zeros ,linspace ,interp ,rand ,ones ,concatenate

from scipy.integrate import odeint

from pylab import plot ,show ,savefig ,xlabel ,ylabel ,clf ,legend ,title

from optim_tools import B_optim

class New_minmod(B_optim):

def __init__(self ,filename):

B_optim.__init__(self ,filename)

self.outparam=’../ dat/new_model/dat_param ’+self.nc_file [-4]+’.dat’

self.outsol=’../dat/new_model/dat_sol ’+self.nc_file [-4]+’.dat’

self.theta=concatenate ([self.data[’G0’],\

self.data[’p1’],\

self.data[’p2’],\

self.data[’p3’],\

array([self.data[’glucose ’][-1]])])

def minimal_model(self ,x,t):

f=zeros (12)

gg=(-x[1]/x[0]**2*(x[1]-self.p[’p1’]*self.p[’Gb’])\

-self.p[’p1’]*self.p[’p2’]\

-self.p[’p3’]*(self.interp(t)-self.p[’Ib’]))

ff=(2*x[1]-self.p[’p1’]*self.p[’Gb’])/x[0]-self.p[’p2’]

f[0]=x[1]

f[1]=(x[1]**2 - self.p[’p1’]*self.p[’Gb’]*x[1])/x[0]\

-self.p[’p2’]*x[1]\

-self.p[’p1’]*self.p[’p2’]*(x[0]-self.p[’Gb’])\

-self.p[’p3’]*(self.interp(t)-self.p[’Ib’])*x[0]

f[2]=x[6]

f[3]=x[7]

f[4]=x[8]

f[5]=x[9]

f[6]=gg*x[2]+ff*x[6]

f[7]=gg*x[3]+ff*x[7]-self.p[’p2’]*(x[0]-self.p[’Gb’])\

-x[1]/x[0]* self.p[’Gb’]

f[8]=gg*x[4]+ff*x[8]-self.p[’p1’]*(x[0]-self.p[’Gb’])-x[1]

f[9]=gg*x[5]+ff*x[9]-x[0]*(self.interp(t)-self.p[’Ib’])

f[10]=x[11]

f[11]=gg*x[10]+ff*x[11]- self.p[’p1’]*x[1]/x[0]+ self.p[’p1’]*self.p[’p2’]

return f

def optimize_f(self ,theta):

y=self.optimize_fdf(theta)

return (y[:,0]-self.data[’glucose ’])* self.weights

def optimize_df(self ,theta):

y=self.optimize_fdf(theta)

return y[:,[2,3,4,5,10]]

def optimize_fdf(self ,theta):

self.p[’p1’]=theta [1]

self.p[’p2’]=theta [2]

self.p[’p3’]=theta [3]

self.p[’Gb’]=theta [4]

y0=array ([self.theta[0],self.p[’p1’]*(self.p[’Gb’]-theta [0])\

,1,0,0,0,-self.p[’p1’],self.p[’Gb’]-theta [0],0,0,0,self.p[’p1’]])

self.y=odeint(self.minimal_model ,y0 ,self.data[’t_glucose ’])

return self.y

26

def run_optimize(self):

print "Optimizing patient: "+self.nc_file [-4]

self.theta ,self.cov_x ,self.infodict , self.mesg ,self.iter=leastsq (\

self.optimize_f ,self.theta ,Dfun=self.optimize_df ,full_output =1)

if(__name__ ==’__main__ ’):

path=glob(’../ IVGTT_data/netcdfdata/patient *.nc’)

path.sort()

cohort =[]

for line in path:

cohort.append(New_minmod(line))

for patient in cohort:

patient.run_optimize ()

clf()

patient.plot_data ()

patient.ys=patient.simulate_model(patient.theta)

patient.plot_simulated ()

patient.plot_legends ()

title(’Patient: ’+str(patient.nc_file [-4]))

savefig(’../ figures/new_model/patient ’+patient.nc_file [-4]+’.pdf’)

patient.write_data ()

patient.calc_var ()

27

References

[1] S Wild, G Roglic, A Green, R Sicree, and H King. Global prevalence of diabetes - Estimates for the
year 2000 and projections for 2030. DIABETES CARE, 27(5):1047–1053, MAY 2004.

[2] American Diabetes Association . Diagnosis and Classification of Diabetes Mellitus. Diabetes Care,
29(S1):S43–48, 2006.

[3] RN Bergman, YZ Ider, CR Bowden, and C Cobelli. Quantitative estimation of insulin sensitivity. Am
J Physiol Endocrinol Metab, 236(6):E667–677, 1979.

[4] Bergman, R. N., and Bucolo, R. J. Nonlinear metabolic dynamics of the pancreas and liver. Journal
of Dynamic Systems Measurement and Control, 95:296–300, 1973.

[5] Andrea Caumo, Paolo Vicini, Jeffrey J. Zachwieja, Angelo Avog aro, Kevin Yarasheski, Dennis M. Bier,
and Claudio Cobelli. Undermodeling affects minimal model indexes: insights from a two-c ompartment
model. Am J Physiol Endocrinol Metab, 276(6):E1171–1193, 1999.

[6] Gianluigi Pillonetto, Giovanni Sparacino, Paolo Magni, Riccardo Bellazzi, and Claudio Cobelli. Min-
imal model SI=0 problem in NIDDM subjects: nonzero Bayesian estimates with credible confidence
intervals. Am J Physiol Endocrinol Metab, 282(3):E564–573, 2002.

[7] Tummers, B. DataThief III. http://datathief.org/, 2006.

[8] Jr. J. E. Dennis and Robert B. Schnabel. Numerical Methods for Unconstrained Optimization and
Nonlinear Equations (Classics in Applied Mathematics, 16). Soc for Industrial & Applied Math, 1996.

[9] Python Software Foundation. Homepage for Python. http://www.python.org/.

[10] Enthought Inc. Homepage for Scipy.org. http://www.scipy.org/.

[11] Thomas Lotz. High resolution clinical model-based assessment of insulin sensitivity. PhD in in
Mechanical Engineering, University of Canterbury, 2007.

[12] G. Pacini and R. N. Bergman. MINMOD: a computer program to calculate insulin sensitivity and pan-
creatic responsivity from the frequently sampled intravenous glucose tolerance test. Comput Methods
Programs Biomed, 23:113–22, 1986.

28

