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Matrix Polynomials
In this work we consider matrix polynomials of the form

P (λ) =

d∑
k=0

Pkφk(λ) ,

where the Pk's are constant n by n matrices, and the
set of {φ0(λ), . . . , φd(λ)} form a basis for polynomials of
degree at most d.
Furthermore, we are interested in solving polynomial
eigenvalue problems, that is, we compute a pair (λ, x)
satisfying P (λ)x = 0, where λ ∈ C, and x ∈ Cn \ {0}.

Barycentric Lagrange Form
A matrix polynomial P (λ) of degree at most d can be
uniquely determined by d + 1 samples Pk = P (σk), at a
distinct set of nodes{

σ0 · · · σd
}
.

The polynomial interpolant can be written in Lagrange
form

P (λ) =
d∑
k=0

Pk`k(λ) , (1)

where the `k(λ)'s are the Lagrange basis polynomials

`k(λ) =

d∏
j=0
j 6=k

(λ− σj)
(σk − σj)

.

The barycentric formula, or modi�ed Lagrange formula
[1] is obtained from (1) by �rst de�ning the so called
barycentric weights

w−1k =
d∏
j=0
j 6=k

(σk − σj) ,

each of the `k(λ)'s can then be written as

`k(λ) = `(λ)
wk

(λ− σk)
,

where `(λ) =
∏d
k=0 (λ− σk) is known as the node poly-

nomial. We then take out the common factor of `(λ) in
the Lagrange formula (1), and this gives the barycentric
form of the Lagrange formula

P (λ) = `(λ)
d∑
k=0

wk
(λ− σk)

Pk . (2)

Linearization of Polynomials
Linearization replaces the polynomial eigenvalue prob-
lem for P (λ) by a larger linear eigenvalue problem L(λ).
The linearization should, of course, have the following
desirable properties [3]:

• the linearization L(λ) is immediately constructable
from the data in P (λ),

• eigenvectors of P (λ) can be easily recovered from
eigenvectors of L(λ),

• L(λ) is a strong linearization of P (λ), partial mul-
tiplicities of the �nite and in�nite eigenvalues are
preserved.

Barycentric Linearization
First proposed in [2], the following (d+ 2)n by (d+ 2)n
linearization L(λ) = λB−A can be formed directly from
the barycentric formula (2)

L(λ) =


0 P0 · · · Pd

−w0I (λ− σ0)I
...

. . .

−wdI (λ− σd)I

 . (3)

This linearization is a strong linearization of the matrix
polynomial

P̂ (λ) = 0 · λd+2 + 0 · λd+1 + P (λ) ,

and thus has an additional 2n eigenvalues at in�nity.

Eigenvector Relations
To relate the left and right eigenvectors of L(λ) to those
of P (λ), we form left and right sided factorizations

G(λ)L(λ) = gT ⊗ P (λ) ,

L(λ)H(λ) = h⊗ P (λ) ,

where the matrix polynomials G(λ) and H(λ) are given
by

G(λ) = `(λ)
[
I − P0

λ−σ0
· · · − Pd

λ−σd

]
, (4)

H(λ) = `(λ)


I
w0

λ−σ0
I

...
wd

λ−σd
I

 , (5)

and additionally, both g and h are equal to e1, the �rst
unit vector.
From these factorizations we may recover the left and
right eigenvectors of P (λ) from those of L(λ) as follows.
Suppose that (λ, v) is a right eigenpair of L(λ) then

G(λ)L(λ)v = (eT1 ⊗ P (λ))v = P (λ)(eT1 ⊗ I)v = P (λ)x ,

where x is extracted from the �rst n rows of v. Similarly,
suppose that (λ, uH) is a left eigenpair of L(λ), then

uHL(λ)H(λ) = uH(e1 ⊗ P (λ)) = yHP (λ) ,

where y is extracted from the �rst n rows of u.

Backward Errors
The normwise backward errors of �nite approximate left
and right eigenpairs (λ, y) and (λ, x), respectively, of a
matrix polynomial P (λ) are given by

ηP (λ, x) = min{ε : (P (λ) + ∆P (λ))x = 0,

‖∆Pj‖ ≤ ε‖Pj‖, 0 ≤ j ≤ d} ,

ηP (λ, yH) = min{ε : yH(P (λ) + ∆P (λ)) = 0,

‖∆Pj‖ ≤ ε‖Pj‖, 0 ≤ j ≤ d} ,

where the coe�cients Pj of the matrix polynomial are
perturbed by ∆Pj , and both are expressed in the La-
grange basis.

Backward Error Bounds
Theorem 1. Let (λ, v) be an approximate right eigenpair

of L(λ). Then for x = (eT1 ⊗ I)v, we have

ηP (λ, x)

ηL(λ, v)
≤ (|λ|‖B‖2 + ‖A‖2)‖G(λ)‖2∑d

i=0 ‖Pi‖2|`i(λ)|
· ‖v‖2
‖x‖2

≤
(|λ|+ ‖A‖2)

(
1 +

∑d
i=0

‖Pi‖2
λ−σi

)
|`(λ)|∑d

i=0 ‖Pi‖2|`i(λ)|
· ‖v‖2
‖x‖2

.

Similarly, let (λ, uH) be an approximate left eigenpair of

L(λ). Then for yH = uH(e1 ⊗ I) we have

ηP (λ, yH)

ηL(λ, uH)
≤ (|λ|‖B‖2 + ‖A‖2)‖H(λ)‖2∑d

i=0 ‖Pi‖2|`i(λ)|
· ‖u‖2
‖y‖2

≤
(|λ|+ ‖A‖2)

(
1 +

∑d
i=0

|wi|
|λ−σi|

)
|`(λ)|∑d

i=0 ‖Pi‖2|`i(λ)|
· ‖u‖2
‖y‖2

.

Error Bound Consequences
We may interpret the above backward error bounds in
the following way:

• The interpolation nodes should be chosen to be
close to the eigenvalues of interest.

• The contribution of the conditioning of the basis
de�ned by the nodes is signi�cant:

� well conditioned node distributions are essen-
tial for small backward errors.

• The norms of the coe�cient matrices ‖Pi‖2 should
have similar magnitudes.

Related Linearization
Recently, other linearizations in the Lagrange basis have
been proposed, such as a n(d+1) dimension linearization
of P (λ) proposed in [4]:

L̂(λ) =
P0 P1 · · · Pd

(λ− σ0)I (σ1 − λ)θ1I
. . .

. . .

(λ− σd−1)I (σd − λ)θdI


where θi = wi−1/wi.
The following transformation Eθ, applied to the right of
L(λ) decouples n of the spurious in�nite eigenvalues from
the linearization (3)

Eθ =


0 −I
I 0

I −θ1I
. . .

. . .

I −θdI

 .

Applying this on the right of L(λ) yields

EθL(λ) =

[
−w0I (λ− σ0)(eT1 ⊗ I)

0 L̂(λ)

]
.

Thus, we may easily apply the backward error analysis to
the reduced linearization L̂(λ). The right sided factoriza-
tion is almost identical, and the left sided factorization
can be computed from G(λ)E−1θ .

Damped gyroscopic system [5]
The matrix polynomial is constructed as follows: let N
denote the 10 × 10 nilpotent matrix having ones on the
subdiagonal and zeros elsewhere, and de�ne M̂ = (4I10+

N+NT )/6, Ĝ = N−NT , and K̂ = N+NT−2I10. Then
de�ne the matrices M , G, and K, using the Kronecker
product ⊗, by

M = I10 ⊗ M̂ + 1.3M̂ ⊗ I10 ,

G = 1.35I10 ⊗ Ĝ+ 1.1Ĝ⊗ I10 ,

K = I10 ⊗ K̂ + 1.2K̂ ⊗ I10 ,

and the damping matrix byD = tridiag{−0.1, 0.2,−0.1}.
The quadratic matrix polynomial we examine is de�ned
by

P (λ) = λ2M + λ(G+D) +K .

We interpolate P (λ) at {σ0, σ1, σ2} = {−1.8, 0, 1.8}, and
compute the eigenvalues of P (λ) from the linearization
L(λ). Figure 1 shows the eigenvalues, the pseudospectra
of P (λ) , and the contour where the conditioning of the
monomial basis is equal to that of the Lagrange basis.
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Figure 1: Eigenvalues and pseudospectra of a damped
gyroscopic system.

Everywhere inside the dotted line represents where the
Lagrange basis is better conditioned than the monomial
basis. Figures 2 and 3 show the frequency of the obtained
backward errors over all computed eigenpairs, as well as
the pessimism index that indicates how many orders of
magnitude larger the backward error bound is from the
computed backward error.
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Figure 2: Damped gyroscopic system, backward error
distributions for left and right eigenpairs.
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Figure 3: Damped gyroscopic system, pessimisim index.

Speaker Enclosure [5]
We consider the quadratic

P (λ) = λ2M + λC +K ,

with M,C,K ∈ C107×107, arising from a �nite element
model of a speaker enclosure. There is a large variation
in the norms of the monomial basis coe�cients:

‖M‖2 = 1, ‖C‖2 = 5.7× 10−2, ‖K‖2 = 1× 107.

We interpolate the matrix polynomial at the nodes
{σ0, σ1, σ2} = {−i, 0, i}. At these nodes ‖Pj‖2 ≈ 1×107,
and so we have already, in a sense, equalized the norms
of the coe�cients through interpolation.
The eigenvalues are shown in Figure 4, and although we
compute the eigenvalues from a complex valued lineariza-
tion, all of the real parts are zero.
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Figure 4: Computed eigenvalues

The backward error distributions are shown in Figure 5,
and are remarkably small. The error bound in this case is
around 4 orders of magnitude larger than the computed
backward errors.
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Figure 5: Speaker enclosure, backward error distribution
for left and right eigenpairs.
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