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MATRIX POLYNOMIALS ) | BARYCENTRIC LINEARIZATION ) |BACKWARD ERROR BOUNDS \ | DAMPED GYROSCOPIC SYSTEM 5] )\ | SPEAKER ENCLOSURE 5] A
In this work we consider matrix polynomials of the form First proposed in [2], the following (d + 2)n by (d 4+ 2)n Theorem 1. Let (\,v) be an approximate right eigenpair The matrix polynomial is constructed as follows: let N We consider the quadratic
linearization £(A) = AB — A can be formed directly from of L(N\). Then for x = (e{ ® I)v, we have denote the 10 x 10 nilpotent matrix having ones on the ,
‘ the barycentric formula (2) subdiagonal and zeros elsewhere, and define M = (4119 + PA) =AM+ M+ K,
P(\) = Pror(A) np (A, x AMIBl2 + [Al[)IG(N) 2 ||v]]2 T A _ A NT o o
< N+N*")/6,G=N—-N*' and K = N+ N* —2I15. Then
k=0 P [ b\ = d ' ’ : ’ : with M,C, K € CY7<197  arising from a finite element
0 P, Py Nz (A, v) > o I Pill2]:(N)) [E4IP define the matrices M, GG, and K, using the Kronecker el of " | There is a laree variation
where the P.’s are constant n by n matrices, and the d ||P;|- product ®, by el B @ Bpiesier WRLBEALS, S e S
set of {Go(\) b2(\)} form a basis for polynomials of —wol (XA —o09)l (A + [|A]l2) (1 =D g ) ()] o] in the norms of the monomial basis coefficients:
o(\), -+, ba LN = . (3) < : . . o
degree at most d. E - > iz I Pill2les (V)] |zl M =Tio®M+13M ® Iy, Mz =1, |C|lz = 5.7 x 1072, ||K]|2 = 1 x 107.
Furthermore, we are interested in solving polynomial o . | . _ G =1.35I1p0 G+ 1.1@(2)[107 |M]|2 , €12 , 11K ][
eigenvalue problems, that is, we compute a pair (A, x) | —wal (A —oa)l | Similarly, let (A\,u’") be an approzimate left eigenpair of -~ -~ We interpolate the matrix polynomial at the nodes
satisfying P(\)x = 0, where A € C, and x € C™ \ {0}. L(X). Then for y™ = u"(e1 ® I) we have K=ho®K+12K®ho, {og,01,09} = {—4,0,4i}. At these nodes || P;||> ~ 1 x 107
\_ This linearization is a strong linearization of the matrix | | o o d? " 7we b ah’rea; dy. in a sense equalizje 1 the norm;
~ polynomial e yE) (B2 + A IH N 2 w2 and the damping matrix by D = tridiag{—0.1,0.2, —0.1}. e e ’ _— 1’ N
BARYCENTRIC LAGRANGE FORM = d ' The quadratic matrix polynomial we examine is defined O LAE COCLLCICLLS LHIOUgH HILETPOLAtIOn.
ﬁo\) 0. 2\4t2 L.\t P()) ne (A, ut) Zi:O | B ||2]€: (M) [yll2 by The eigenvalues are shown in Figure 4, and although we
A .matrix polyngmial P(A) of degree at most d can be | (1A + || A][2) (1 4 Z?—o P\hiji’.|) e | PO =M+ ANG+D)+K. c.ompute the eigenvalues from a complex valued lineariza-
uniquely determined by d + 1 samples P, = P(og), at a \and thus has an additional 2n eigenvalues at infinity. < - _ i : ] H2 , We int late P()) at { L (-18.0.1.8) q tion, all of the real parts are zero.
distinct set of nodes > o I Bill2]€i (V)] Yll2 € Interpolate at 00, 01,025y = 1—1.06,U, L.oy, an
: ~ \- ’ compute the eigenvalues of P(\) from the linearization 5 10*
{ o0 -+ o0a}. FEIGENVECTOR RELATIONS = a\ L(N). Figure 1 shows the eigenvalues, the pseudospectra |
To relate the left and right cigenvectors of £(A) to those ERROR BOUND CONSEQUENCES of P(\) , and the contour where the conditioning of the e
. . . . . .. . 1t - .
fr];?ren polynomial interpolant can be written in Lagrange of P()\), we form left and right sided factorizations T ——_— monomial basis is equal to that of the Lagrange basis. //
d the following way: ~ ~
T 3 x x x w w x x 6 O -
P(A) =) Puli(N), (1) GALA) =g @ PN, . . E -
e The interpolation nodes should be chosen to be S
k=0 . . % * ~
where the /;(\)’s are the Lagrange basis polynomials LVHQA) =h@ PR, close to the elgenvalues of interest. - ﬁ//
where the matrix polynomials G(\) and H()\) are given e The contribution of the conditioning of the basis i
L) ﬁ (A — o)) by defined by the nodes is significant: =2 = = = 550
k(A) = — . Eigenvalue Ind
j=0 (oK — ;) GO\ =\ | I — Py U } (4) — well conditioned node distributions are essen- IETVATE Tnaex
J7k A= 00 A0 ’ tial for small backward errors. Figure 4 Computed eigenvalues
The. bary(:(.entric tormula, or modified Lagrange formula L e The norms of the coefficient matrices || P;||2 should The backward error distributions are shown in Figure 5,
1] s obt?uned. from (1) by first defining the so called Al—l)(c)wo I have similar magnitudes. 27 3 2 -1_0 1 2 3 and are remarkably small. The error bound in this case is
RiGEntle Trelgits H(A) = €M) : ’ (5) N~ et around 4 orders of magnitude larger than the computed
» ﬁ ( ) | - I RELATED LINEARIZATION ) Figure 1 Eigfnvalues and pseudospectra of a damped backward errors.
w1 — op — 04) - gyroscopic system:. 0.35 \ \ \ 0.35 \ \
: alirs ’ and additionally, both g and h are equal to e, the first Recently, other linearizations in the Lagrange basis have oal | sl m
J7k unit vector. been proposed, such as a n(d+1) dimension linearization Everywhere inside the dotted line represents where the 025 L 0.25 -
: . From these factorizations we may recover the lett and | | of P(\) proposed in [4]: Lagrange basis is better conditioned than the monomial 5 o2l - 5 02
each of the £;(A)’s can then be written as right eigenvectors of P(\) from those of £(\) as follows. basis. Figures 2 and 3 show the frequency of the obtained 30,15 30,15 -
W Suppose that (), v) is a right eigenpair of £()\) then E( A) = backward errors over all computed eigenpairs, as well as T o1l Y
Ce(A) = £(N) A —op) _ _ the pessimism index that indicates how many orders of 0.05 HHHH | 005 |
GAN LN = (el ® PA\))v=P\)(ef @ )v=P\z, (A o ) PE\)Q I Fa magnitude larger the backward error bound is from the e e N R T
I _ : i — 00 01 = A1 computed backward error. ‘ozt (%,5) togiole (%)
Whelﬁe 40 = g OV — oty 10 Inomm &5 G mods pOI?/ where x is extracted from the first n rows of v. Similarly, : : C .
nomial. We then take out the common factor of £()\) in ) ose that (\,ut) is a left eigenpair of £(}), then : 0o | | | | 0.05 | | | Figure 5: Speaker enclosure, backward error distribution
the Lagrange formula (1), and this gives the barycentric e ¢ 1P ’ (AN—o0g-1)] (0q— N0l N u for left and right eigenpairs.
grang , g y ] ] o || &
0.15¢ - 1 —
form of the Lagrange formula WHLOVHO) = vl (e, @ POV) = v P()), where 0 = wi_1 /u 2 N s |
= Wi /we | | ol i E >
PO = £ Ed: we ) \Where i is extracted from the frst r rows of u. The following transformatlo.n Eg., appheq to the right of g g o1 A REFERENCES
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N, yf) = min{e : y# (P(\) + AP(N)) =0 EoL(A) = A - - - -
e cigenvectors of P(\) can be easily recovered from np(A,y7) =min{e : y~ (P(A) + (M) =0, 0 0 L) ' 0.05| H | 005 ; terpolating matrix polynomials, to appear in IMA J.
eigenvectors of £(\), |AP;|| <e||P]l, 0< 5 <d}, : e : Numer. Anal.
Thus, we may easily apply the backward error analysis to T T pessimismindex 0 0T T T amismindex 5] T. BE’JTCKE, N. J. HicHaMm, V. MEHRMANN, C.
o L(A) is a strong linearization of P()), partial mul- | | where the coefficients P; of the matrix polynomial are | | the reduced linearization £(\). The right sided factoriza- | | - SCHRODER, F. TISSEUR, NLE X]é A collection ﬁf
tiplicities of the finite and infinite eigenvalues are perturbed by AP;, and both are expressed in the La- tion is almost identical, and the left sided factorization Figure 3: Damped gyroscopic system, pessimisim index. g(o)giifnegg@e)zgé%%ly ;ppr?.bll_e?:zésé M rans. Math.
d. range basis. be computed from G(\)E, ' B
\ preserve \g g \(jan p 0 - \ \




